This study addresses the responses of idealized building clusters during earthquakes, their effects on ground motion, and the ways individual buildings interact with the soil and with each other. We simulate the ground motion during the 1994 Northridge earthquake and focus on the coupled responses of multiple simplified building models located within the San Fernando Valley. Numerical results show that the soil-structure interaction (SSI) effects vary with the number and dynamic properties of the buildings, their separation, and their impedance with respect to the soil. These effects appear as: (i) an increased spatial variability of the ground motion; and (ii) significant reductions in the buildings' base motion at high frequencies, changes in the higher natural frequencies of the building-foundation systems, and variations in the roof displacement, with respect to those of the corresponding rigid-base and single SSI models.